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AN ADAPTIVE MESH TECHNIQUE FOR FINDING THE
BISTATIC SPECULAR POINT ON A CONVEX HULL -

INTRODUCTION

One of the most computationally expensive routines in the Naval Undersea
Warfare Center’s (NUWC’s) High Frequency Target Acoustic Model (HFTAM) is the
routine that searches for a bistatic specular point along a hull-like surface. This routine is
the first part of the specular scattering calculation, and it computationally determines the
point along the hull surface that minimizes the distance from the source to the surface
point to the receiver. This point will be unique for a convex shape and will be the point
whose normal bisects the vectors from the point to the source and from the point to the
receiver. This bistatic specular point is used by other routines to compute the specular
scattering from the hull-like structure. Monostatic geometries are not handled separately
and are only viewed as a case where the source and receiver happen to be collocated.
The computational routine that finds the specular point treats the hull-like geometry
description with the source and receiver locations as input and returns the coordinates of
the specular scattering point as output. For the remainder of this report, the process of
finding this specular point for a fixed source/receiver pair will be called a hull search.

This report begins with a description of the equations used to model convex hulls,
as they are an integral component of the solution techniques. Then, a detailed explanation
of the current bisection hull search technique and its performance is presented. This is
followed by a description of the new adaptive mesh hull search technique and its perfor-
mance relative to the existing technique. Finally, a software implementation guide is
presented for incorporating the new search routine into the HFTAM.

GEOMETRY OF THE CONVEX HULLS

The surfaces represented as convex hulls are many structures that can be internal
or external to a target, have complex curvature, and are not necessarily represented by
canonical shapes. The only restriction for fitting a geometrical shape to these surfaces is
that the surface must be representable by a convex shape (or a portion thereof). Since the
majority of the shapes of interest are submarine-like (i.e., shaped like a perturbed
cylindrical shell), it is advantageous to represent the geometry by an equation that is
implicit in the coordinates and is of the form

f(yaml (X), m2(x)>'“) +g(z,n1 (x),n2 (JC),) =0. (1)




In this form, the functions m; and n; represent parameters that vary along the length of the
hull (hence their explicit dependence on x). By using a representation of this form, it is a
direct procedure to find parameters that fit a given geometry to the equations by fitting
“slices” of the y-z plane at fixed values of x (i.e., identify values of m;(x), m{(x»), etc., for
a large set of x locations), and then allowing the m; and n; parameters to vary smoothly as
a function of x. In this context, “smoothly” implies continuity through at least the second
derivatives (C2 continuity).

To represent the types of curvature often seen in these y-z slices, the HFTAM uses
a geometric expression for each slice that is represented by a hyperellipse:'

p(x) p(x)
CrlG-o ®
b(x) a(x)

where the parameter d allows a non-zero offset of the slice in the z-direction. An example
of a surface defined in this way is shown in figure 1. The expressions for the parameters
defining this particular surface can be found in appendix A.
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Figure 1. Sample Convex Hull Represented by the Hyperelliptic Formulation

To allow for a greater variety of surfaces, the hyperellipse expression can be
supplemented by a set of cutouts. These are regions that are defined in x-z space and are
flagged as existing on the mathematical convex hull but do not exist on the real surface.
In this way, partial convex hull pieces may be used to represent complex geometries.
Hence, the specular point is computed as if it were a complete convex hull, and then
computational logic determines whether or not a real specular point exists (which occurs
when the computed point is not in the flagged region). An example of a surface defined
with a cutout is shown in figure 2. In this figure, the red region on the bottom and the
blue region on the top are separated by a cutout shown by a gray slice.

This example shows how a piece of a very complex curved surface can be
represented by a convex hull with associated cutout regions. In this case, the red section
could be a deck structure that is defined separately from a main hull, thus allowing a



nonconvex geometry to be represented as the union of multiple pieces of convex
geometries. Also, the hyperelliptic exponent p > 2 for the red section (becoming as large
as 20), giving the convex hull section a squared-off deck-like appearance. In this way,
virtually any geometry that is seen in an undersea structure can be represented by a series
of (potentially partial) convex hull sections. The expressions for the parameters that
define the surface and the cutout region shown in figure 2 are found in appendix B.
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Figure 2. Sample Convex Hull with a Cutout Region

BISECTION SEARCH APPROACH

The current technique that is implemented in HFTAM for finding the specular
point was provided by Lengua® and is briefly reviewed here. In this algorithm, a one-
dimensional bisection search* is performed in the x-direction. At each step of the
bisection search, the source and receiver points are projected onto the y-z plane. An
analytical expression for the minimization of the distance from the source to hull to
receiver within this plane is then evaluated.

The analytical minimization function is obtained as follows. For a candidate x
location given by x = x_, the total distance from the source to a point on the hull is given

by

ps(y,z)=\/(zs —zf +(y, - yF, 3)

where the subscript s corresponds to the source’s coordinates. The distance to the receiver
is given by a similar expression for p,. The total distance is minimized for a given x
location by first using equation (2) for the fixed x value to solve for y in terms of z as



1/ p(x¢)

p(x¢)
z—d(x,)
y=bx) 1- (——(——) @
a(x.)

With this definition for y, the minimization problem is written in terms of the single
unknown z by first setting the distance variation to zero for a minimum as

d

—(p, +p,)=0. (%)

dz

The minimization expression in equation (5) is solved by combining with equation (3) to

get
0=(Zs_z]+(zr_z)+(g_y_) (ys_y]+(yr_y]. (6)
Ps Pr az )|\ Ps Pr
Since y is a function of z in equation (4), this expression has a single unknown quantity z.
However, the expression for z in equation (6) will be transcendental rather than a simple
polynomial (due to both y(z) and the derivative of y with respect to z) and has to be

solved by a numerical procedure. The HFTAM program currently uses a bisection search
for this transcendental evaluation.

This technique is mathematically elegant but computationally costly. Further-
more, there is no guarantee of convergence of the algorithm, because the convergence is
dependent on the numerical simplicity of the analytical minimization problem. If the
points found at each x. vary in a simple manner as the algorithm moves through x values,
there is good convergence. However, if the points found at each x, vary in a complicated
way (even if this is only a numerical phenomenon), the convergence may be poor or even
nonexistent.

The bisection search technique performs well when the hull shape is nearly
elliptical (i.e., p = 2) since these cases tend to have a simple analytical expression for the
minimum distance point for a given slice. However, for the cases where the convex hull
geometry is used to represent complex shapes other than hulls, and also for the hulls of
many diesel-electric submarines, the hull shapes are more squared-off at the corners
(p >> 2) rather than elliptical. To create an accurate representation of these nonelliptic
geometries, the hyperellipse formulation uses an arbitrary exponential p(x), which may
vary along the length of the hull. It is in these cases that the bisection search algorithm
has difficulty in converging and often does not converge in the maximum number of
iterations or fails to converge due to the complexity of the changes in the parameter p
over the search length. Furthermore, these cases tend to be extremely computationally
intense even when they do converge to a solution. This computational complexity is
caused by the need to perform a secondary bisection search at each candidate x value as
well as performing a large number of noninteger power evaluations in the analysis of
equation (4) and its derivative. Thus, there are costly computations that occur in both the
evaluation of a given test point and the iteration between test points. It should be noted,



however, that the computational complexity is greatly reduced when p = 2. In that case,
the expression in equation (6) can be rewritten as a very large polynomial equation in z,
which can be solved quickly and accurately.

. To illustrate the computational complexity of these routines when the hull shape

is nonelliptical (i.e., p # 2), the hull search evaluations that are performed for two
different submarine-like models must be considered. The first case uses a model called
TestSub, which contains both hull and internal hull-like structures, all of which have p
identically equal to two. The second case is with a model called Omega, which uses p
values that not only are different from two but also vary along the length of the hull.
Furthermore, this model has internal hull-like structures that have p values other than
two. To perform an accurate measure of the computational complexity of these two
models, they were both run on the same computer (a 130-MHz IBM RS/6000) over the
aspect range of —180° to +180° at a 0.00° elevation angle in a monostatic geometry. The
number of hull search calls varies as a function of aspect as various internal structures
become hidden from the acoustic path. Thus, the total time spent in the hull search
routine over all aspect runs was tallied and divided by the total number of hull search
calls to give a value for the average time per hull search. The results are shown in table
1. Itis clear from table 1 that the hull search routine with elliptical curves is much faster
than the routine for nonelliptical curves. In fact, the nonelliptical routine had an average
search time that was over 12 times longer than that for the elliptical hull. Similar results
have been observed for other models. Thus, the bisection hull search routine has been
shown to be very slow for nonelliptical hulls.

Table 1. Performance of the Bisection Hull Search

Model Number of Total Time in Average Time per
Hull Searches Hull Searches Hull Search

TestSub 334 0.20 sec 0.60 msec

Omega 543 4.15 sec 7.64 msec

For real-time (and even for fast wall-time) simulation purposes, it is very
important to make all of the routines in a model as fast as possible while maintaining a
high level of fidelity. Furthermore, a guarantee of convergence at all aspects (where
specular points exist) is a requirement for simulations because the model is used only
for one specific aspect at a time. In the context of this report, this is referred to as the
robustness of the numerical algorithm. The robustness of the bisection search algorithm
was addressed by examining two runs of the Omega model, i.e., one at 0.00° elevation
angle and a second at 0.01°. The results of these two runs for the outer hull target
strength are shown in figures 3 and 4. It is obvious from these plots that the 0.00°
elevation run is missing the beam aspect behavior that is shown in the 0.01° elevation
run. Some analysis of the runs found this to be caused by a lack of convergence of the
hull search routine in the former run, which caused the target strength to be nonexistent.
This extreme sensitivity to a minor change in elevation angle is not a physical effect but
merely a numerical artifact that demonstrates the lack of robustness of the bisection hull
search technique.
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The robustness issue is a primary concern only in simulation applications; it is
much less important when plots of behavior over a range of aspects is the required output,
such as for target strength plots or “hourglass” echo plots. However, robustness is a
critical issue when the output of the model is going to be used as input for a processing
scheme, as is the case in most simulation applications. In such cases, individual runs
(specific aspect angles) are performed separately and the individual run results are more
important than the composite. A numerical search technique that is based on algebraic
expressions with less complexity may improve this robustness issue. When such an
algorithm is developed with equivalent or better speed performance than the bisection
method, it will be a practical improvement.

GEOMETRIC MESH SEARCH APPROACH

A new algorithm for the bistatic hull search problem has been developed. This
algorithm was created to correct the robustness and speed problems of the bisection
search algorithm for simulation purposes. Robustness issues arise when the geometry
along the hull shape either changes extremely rapidly (sharp corners) or very slowly
(cylindrical sections) and the bisection algorithm has difficulty converging. Furthermore,
the speed of a hull search routine used in simulations needs to be relatively insensitive to
the geometric complexity of the specific structure. This type of robustness is a
requirement of the user community to ensure that the computational model’s speed is
stable, regardless of the input parameters of a particular run.

To handle these robustness issues, a search method was developed based on local
adaptive refinement of geometric meshes along the convex hull’s surface. The advantage
of a geometric mesh is that the details of a surface’s complexity lie in the definition of the



mesh points, and the surface between the mesh points is represented by simple curves.
Thus, once the mesh is generated, all of the complicated equations defining the surface
have been replaced by a table of mesh points.

For the acoustic scattering problem, the mesh is defined to a level of detail such
that the local radii of curvature at a specular point are determined to an accuracy of at
least a wavelength squared (A?). This requirement is driven by the specular scattering
equation from the Geometric Theory of Diffraction’ and its numerical evaluation. This
level of detail can be guaranteed only if the space between nearest mesh points is no
greater than the wavelength A. Such a mesh can be prohibitively large; for example,
consider a cylinder with a 5-m radius and a length of 50 m being ensonified at 15 kHz.
The minimal number of mesh points to guarantee a one-wavelength maximum distance
between nearest points is 157,394 (this does not even account for the endcaps). Such a
large number of mesh points is not practical to generate; therefore, a meshing scheme
based on local mesh refinement has been developed.

Adaptive mesh refinement is practical for a specular point searching routine
because the specular points are a local phenomena, and the mesh only needs to be refined
in a neighborhood of the specular point. To locally determine the specular point at a
given level of refinement, the mesh is evaluated point-wise and the minimum combined
distance from source to mesh point to receiver is tabulated. The point with the smallest
combined distance is the closest point to specular in the given level of refinement for the
mesh points evaluated. To further refine the mesh, the new search area around the chosen
point must be made large enough to guarantee convergence as the mesh refines. Ina
worst case, the mesh can be refined by at least a level of one-fourth (in area) at each step.
In this scenario, the specular point will be known to within an accuracy of

dist(SP - sP") ,f(/ f 4 | )

after » steps of refyﬂng, where A4 is the initial convex hull surface area, SP is the exact
specular point, SP is the computed specular point, and dis?( ) is the standard L, distance
norm.

The locally adaptive meshing technique that has been developed for the hull
search problem uses a mapping of the convex hull surface into a two-dimensional space.
The mapping was specifically derived for hyperelliptic convex hulls represented by
equation (2). The mapping that is used in this algorithm translates between the physical
(x,,2) space and the (x, 6) space, where x is the same in both domains. This mapping is
given by

3(x,6) = £b(x)- ('me ®

,B(B)lj z(x,0)=d(x)* a(x)(

ﬂ(9))

where
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and the inverse mapping is given by

- y —a(x)
0= arctan([z Tt} b(x)} (10)

In equation (8), the sign in the expression for y is chosen to be the same as the sign of 6,
and the sign in the expression for z is chosen to be negative when |0| < z/2 and positive
otherwise. In all of these expressions, the values of @are assumed to be in the range
-T<0=<r.

This mapping is not a complete geometric mapping, i.¢., it is not both “one-to-
one” and “onto” mapping, which, in general, is not appropriate for numerical meshing.®
However, the mapping is onto (i.e., every point in one domain maps to the other domain
and vice versa) and is lacking the one-to-one property. This point may seem insignificant,
but it is important since there are multiple points in the (x, 6) space that may map into the
same point in the (x,y,z) space. In this case, it is not a problem due to the total convexity
of the shapes being modeled. In fact, as a result of the total convexity, it is guaranteed
that the multiple points mapping into one point will occur at exactly two locations on a
convex hull, i.e., at the maximum and minimum values of x, where the hull’s two-
dimensional representation closes-up on itself. Knowing the exact location of these
points a priori, a correction for the ambiguity of transforming between the two- and
three-dimensional spaces at these points is made with simple logic in the computer
program. Furthermore, since the mapping is onto, there is no problem of an ill-defined
point in either space (such points often arise due to numerical inaccuracies) that would
not transform to the other space. In fact, any such ill-defined points will transform
smoothly between the two spaces (with the singular exception at the already mentioned
endpoints).

In the adaptive meshing technique that has been developed, an initial mesh on the
convex hull is performed using the grid spacing of 20 points in a rectangular grid in the
(x, 0) space that is given by

X; = {xmin’ (3xmin +xmax)/4’ (xmin + xmax)/zs (xmin + 3xmax)/‘4> X max

6;={-=/2, 0, x/2, =,

where X, is the minimum value of the defined surface in the x-direction and xma is the
maximum value. Each of these mesh points is transformed to the full three-dimensional
space, and the distance from the source to the mesh point dS;; and the receiver to the mesh
point dR;; is calculated for each of the points in the mesh. The point whose sum of these
two distances represents the minimal sum is returned as the point to use in the next
iteration. For the convex shape (the only shapes under consideration), there is the



possibility that two or more of the points will share this minimal distance. However, this
will occur only for neighboring points, which is another benefit of the convexity of the
shapes modeled. For this reason, the iteration scheme includes nearest-neighbor points in
the next iteration.

The iteration of the technique is performed in the (x, ) space with transformations
to the three-dimensional space performed with each new point added as the mesh is
refined. These transformations to the physical coordinate system are the most computa-
tionally intense portion of the search algorithm, requiring one tangent evaluation and two
operations of raising a real number to a noninteger power for each mesh point (in addition
to numerous numerically fast operations). Keeping a regularly spaced rectangular mesh in
the (x, 6) space, each iteration will require the addition of 16 new mesh points. As shown
in figure 5, the new mesh includes the entire region between the chosen point of the
previous iteration and all of its nearest neighbors. The three-dimensional representation of
each of the new points is used to compute the source to mesh point to receiver distances,
which are compared against the center point. Note that the other eight points in the refined
mesh patch do not need to be evaluated since they were used at the previous step and
determined to be farther than the center point. The 16 new points plus the center point that
started the iteration are all compared for minimum distance and the minimum is used as the
center point for the next iteration.

Figure 5. Diagram of the Mesh Adaptation Procedure

The iterative nature of the hull search routine allows the calculation to be fairly
quick, but, more importantly, its speed of operation can be predicted without assuming
anything about the convergence of any particular geometry. In practice, for a convex hull
shape with length L and maximum diameter D, the nominal initial area can be assumed to
be less than ‘

Ay = nD(L + D), (11)



which is the area of a cylinder of those nominal dimensions with spherical endcaps.
If the final location must be determined to within a wavelength and the initial area is
bounded by equation (11), then, with the aid of equation (7), it can be shown that the
number of iterations required is

log{zD(L + D)}-log(242)
n> oo . (12)

With this expression, the number of iterations required can be set ahead of the search by
knowing only the maximum diameter, the overall convex hull length, and the wavelength
(or frequency). This number of iterations for convergence is not dependent on the
complexity of the shape and, therefore, provides an improvement in terms of the
computational efficiency of the hull search technique. Also, the number of iterations
required increases with frequency, but only as log(f), which is slower than linear for large
frequencies.

As an example of the computational requirements of adaptive meshing, consider
again the case of a cylinder 50 m long with a 5-m radius being ensonified by a 15-kHz
pulse. Direct meshing required 157,394 mesh points, not including the endcaps. For the
adaptive mesh technique, equation (12) shows that nine iterations will be required. Since
20 mesh points are generated initially and an additional 16 mesh points are generated at
each iteration, this problem would require only 164 mesh points in the adaptive technique.
This relatively small number of point evaluations (164 compared to more than 150,000) is
what makes the adaptive meshing technique a practical approach. Direct meshing would
require far too many computations.

To assess the accuracy and robustness of the adaptive mesh hull search method,
comparison runs were made with exactly the same conditions as those performed for the
bisection search algorithm. The timing comparison is shown in table 2 for the TestSub
and Omega models.

Table 2. Performance of Adaptive Mesh Hull Search

Model Number of Total Time in Hull | Average Time per
° Hull Searches Searches Hull Search

TestSub 334 0.46 sec 1.38 msec

Omega 543 0.85 sec 1.56 msec

In contrast to the bisection hull search, the adaptive mesh hull search technique
has a much more consistent average time per hull search. With this technique, the
Omega model average time per hull search is only 13 percent longer than TestSub’s;
whereas for the bisection search, the difference was 1173 percent. However, the average
time per hull search for the elliptical case of TestSub (where the bisection technique
converges rapidly) is more than twice as long with the adaptive mesh hull search.
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Two more models were run with both hull search techniques to confirm that the
timing conclusions were consistent and not based on any peculiarities of a specific model.
The two models added were called Yellow (a model with all elliptical hull shapes) and
XYZ (a model with many hyperelliptical hull shapes). The results of the timing runs for
all four models with both hull search techniques are summarized in table 3, which
presents only the average time per hull search.

Table 3. Performance of Bisection and Adaptive Mesh Hull Searches

Model | Eiptical | S|y orage Time | ‘Average Time
TestSub Yes 334 0.60 sec 1.38 msec
Yellow Yes 297 0.68 sec 1.31 msec
Omega No 543 7.64 sec 1.56 msec
XYZ No 629 4.75 sec 1.86 msec

From the results shown in table 3, it is evident that the adaptive mesh search
algorithm is much more consistent in runtime than the bisection search. Furthermore, the
worst case of the adaptive mesh hull search (1.86 msec) is much faster than the worst
case of the bisection hull search (7.64 msec). This is because the bisection hull search is
much slower for nonelliptical hulls, whereas its performance for elliptical hulls is very
fast. By contrast, the adaptive mesh hull search is only slightly slower for nonelliptical
hulls than it is for elliptical hulls. This slowdown is attributed to the increased complexity
of point transformations from two-dimensional to three-dimensional space when the
exponents are not equal to two (see equation (8)).

The consistency in average hull search time that is found in the adaptive mesh
search algorithm is one of its improvements over the bisection search. It should be noted
that the increase in computational time using the adaptive mesh for elliptical hulls (over
the bisection search) is not large enough to outweigh the performance gams found with
nonelliptical hull sections.

The second performance improvement that is gained by using the adaptive mesh
search algorithm is in the robustness of the computation. Running the same two cases
that were shown in figures 3 and 4 (Omega model outer hull with bisection at 0.00° and
0.01° elevation angles, respectively) showed that the adaptive hull search algorithm
produced a consistent result over the small change in elevation angle. The results of hull-
only target strength runs for these cases are shown in figures 6 and 7. From the plots, it is
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obvious that the adaptive mesh search routine provides a robust result that does not vary
drastically with extremely small angle changes.

The peculiar behavior of the target strength plot near the 0° aspect angle is a
function of the squared-off nature of the bow. This type of behavior can be seen only in
complex hull shapes and is not seen in simple canonical hulls. This feature is also not
captured in the bisection search algorithm since the bow is at the endpoint of the two-
dimensional coordinate surface and the bisection search algorithm requires many more
iterations than the maximum allowed to converge there for nontrivial hull shapes. The
behavior of the target strength plot in the stern section (beyond 110° aspect angle) is
something that is peculiar to a complete convex hull. This effect is from the small cap-
like section at the stern required to make the shape complete. If the effect is not desired, it
can be removed by adding a cutout to the hull geometry definition in that region.

The accuracy of an overall acoustic scattering model such as the HFTAM will be
affected by a change in the hull searching algorithm. Since the HFTAM has already been
validated at the peak target strength level, the impact of any changes at the peak target
strength level needs to be documented. Peak target strength calculations for the entire
structure (outer hull, sail, internals, etc.) were computed for the HFTAM with the
bisection hull search routine and with the adaptive mesh hull search routine for all four
targets studied. The results of the peak target strength comparisons can be seen in figures
8 through 15. All of these results were plotted in a polar format with a radial direction
displaying level in decibels and the rotational direction representing aspect angle (off-
bow) in degrees.
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As can be seen in figures 8 through 11, the two models that had all elliptical hull
cross sections (TestSub and Yellow) produced similar peak target strength results for the
two different hull search techniques. This is expected because the bisection algorithm
has no problems with purely elliptical hull geometries. The adaptive mesh hull search
technique always converges to a point that is near the true specular point, so it is believed
to be a more accurate technique. However, the existing HFTAM with the bisection
search algorithm has also been validated against acoustic data and, therefore, must be
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Figure 8. Peak Target Strength of TestSub Figure 9. Peak Target Strength of TestSub
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Figure 10. Peak Target Strength of Yellow Figure 11. Peak Target Strength of Yellow
Model Using Bisection Hull Model Using Adaptive Mesh Hull
Search Technique Search Technique
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assumed to be accurate for the shapes that have been used for the model validation. The
existing validations were performed with target shapes that are purely elliptical, so a
comparison of figures 8 and 9, as well as figures 10 and 11, shows that existing validation
data are still applicable to the adaptive mesh hull search algorithm. Thus, the adaptive
mesh hull search algorithm is at least as valid as the bisection algorithm, when compared
with previous validations.

For nonelliptical hull geometries, such as those found in the Omega and XYZ
models, the adaptive mesh algorithm computes a specular point for all cases. However,
there are times when the bisection algorithm fails to converge in the Omega and XYZ
models and, therefore, returns no target strength. Thus, the total net peak target strength
for all highlights may, for certain aspects, be lower in the bisection algorithm than in the
adaptive mesh algorithm. The plots in figures 12 through 15 confirm this. In figures 12
and 13, for the Omega model, the difference in peak target strength is very small between
the two techniques. This is due to the hull not being the dominant highlight over most
aspect angles (the exception being near bow and beam). In figures 14 and 15, for the
XYZ model, there is a considerable difference in peak target strength between the two
techniques, which can be attributed to the dominance of hull highlights for this particular
target. Also, the behavior near the stern (180°) that is exhibited in figure 15 is caused by
computing the reflection near the tail section of the outer hull, a region where the
bisection algorithm fails to converge (see figure 14).

The discrepancies found between the two techniques in figures 14 and 15 should
not affect any existing validations of the HFTAM since these are based on the XYZ
model. The XYZ model has not yet been validated at the peak target strength level
against acoustic data; therefore, it is not imperative to make the two techniques agree at
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218"1;'_“ ‘:fi“gso 218‘3:: | .:}"';30
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Figure 12. Peak Target Strength of Omega Figure 13. Peak Target Strength of Omega
 Model Using Bisection Hull Model Using Adaptive Mesh Hull
Search Technique Search Technique
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the peak target strength level. It is anticipated that the results with the adaptive mesh hull
search technique (figure 15) will be more accurate than the results for the bisection hull
search technique (figure 14).

The peak target strength validation metric is not the only validation metric avail-
able, but it has been presented here to show the validity of the new hull search technique.
This analysis provides a connection with the existing validation databases. The new
technique should also be validated by specific users with regard to their needs, such as
highlight location, time echo characteristics, etc. The comparisons shown in this report
are illustrative only and do not represent a complete validation.

SOFTWARE CHANGES FOR IMPLEMENTATION

To implement the adaptive mesh specular point search algorithm, a number of
changes needed to be made to the HFTAM software. These changes have all been made
and tested on HFTAM (Version 1.5) to produce the results shown in this report. It is
expected that the adaptive mesh hull search routine will become the default hull search
technique in the next version of the HFTAM (Version 1.6).

The HFTAM software changes were all written in ANSI C and conform to the
programming style used in the other HFTAM routines. (All of the software changes that
are documented in this report are maintained by the author of this report.) The programs
were tested by creating a new model routine bisim2.c that was very similar to the existing
bisim.c with the exception of calling up the new hull search in place of the old hull
search. Table 4 lists the programs that were created for the new hull search routine.
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Table 4. Additional HFTAM Software Routines Written
for the Adaptive Mesh Implementation

Name

Description

HullSeach2.c

Main program for adaptive meshing used in the
same way as HullSearch.c.

PatchEval.c

Finds the point with minimal distance for a
given level of mesh refinement.

Xtheta2XYZ.c

Computes the three-dimensional coordinates of
a point from its two-dimensional representation.

ddelli2.c

Computes parameter values only (without
derivatives) for a fairing ellipse section.

ddpoly2.c

Computes parameter values only (without
derivatives) for a polynomial section.

GetFitParameters2.c

Finds (a,b,d,p) for a given x value.

Table 5 lists the routines that required modification to accommodate the new hull

search routine.

Table 5. HFTAM Software Routines That Are Changed
for the Adaptive Mesh Implementation

Name

Description

Echoes.c, bisim.c

Recompiled to be linked with new routines.

m_protos.h

Modified to include the input/output and call-
list structure of each of the new routines shown
in table 4.

Hull.c

Changed to call HullSearch?2 instead of calling
HullSearch.

When the new hull search routines are in place, some old search routines will
become obsolete. Routines that were specific to the bisection hull search routine and that

will no longer be required in an implementation of HFTAM are listed in table 6.

16




Table 6. Software Routines That Become Superseded in the
Adaptive Mesh Implementation

Name Description

GetCandidatePoint.c | Finds (y,z) coordinates for a sample x value.

HullSearch.c Replaced by HullSearch2.c.
Performs the bisection search on a fixed x slice
YZEqn.c ' for the analytical distance minimization
problem.
CONCLUSIONS

A new adaptive mesh technique for searching for a bistatic specular point on a
convex hull surface has been developed for the NUWC HFTAM. The existing method of
bistatic specular point searching in HFTAM uses a bisection search with numerical
evaluations of a transcendental equation at each bisection step. This method has been
shown to lack computational robustness.

The adaptive mesh technique has been implemented with the HFTAM and has
been shown to be more robust than the bisection technique. Furthermore, the speed of
computation for the new technique is independent of the complexity of the geometric
shape being modeled. The bisection technique, in contrast, was shown to perform very
slowly when nonelliptical hull sections were used. For many of the complex shapes that
are defined to a high level of geometric fidelity, the nonelliptical representations are
necessary and, thus, there is a need for the new hull search technique.

The adaptive mesh hull search technique is expected to become the hull search
used in a future release of the HFTAM. It has been shown to improve robustness of the
current technique and to improve the speed of the search process for complex geometries.
The impact of the new search routine on the HFTAM has been shown in terms of overall
peak target strength as well as some individual hull target strength comparisons. The
model shows results that are at least as accurate as the existing technique. These
improvements in the hull search routine will improve the speed and fidelity of the
HFTAM for future simulation studies.
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APPENDIX A

HYPERELLIPSE PARAMETERS FOR
SAMPLE CONVEX HULL OF FIGURE 1

This appendix contains the equations defining the hyperellipse parameters for the
surface shown in figure 1. The convex surface of this shape is defined on the region
—355.1688 < x <55.1688.. The equations defining the surface are the generalized
hyperellipse equations in the form of equation (2), and the parameter a is given by the

following:

(8.7558 +0.47683x +0.021646x>
+{8.2292x 10‘4)x3 + 24481 x 10‘6)x4 for

—-3.93041+ \/— 0.02805x2 - 0.66686x +76.31107 for

] 5.0292 for

2.9442 + \/ -0.027338x2 +2.01651x — 32.8381 for

~22.027765 +1.32234x — 0.016266x> for

\\/- 0.35705x2 +1.48663x + 26.65693 for

-55.1688 < x <-31.5,

~315<x<-11.8872,
~11.8872 < x < 36.8808,

36.8808 < x < 44.5069,

44.5069 < x < 49.9933,

49.9933 < x <55.1688.

For this particular shape, b = a for all x. Furthermore, for this shape, the parameters d

and p satisfy the following:

d=0, for—55.1688<x<55.1688
p=2, for—55.1688 <x <55.1688.

Therefore, all of the cross sections of the shape are circles (since a = band p =2) that

are centered about the x-axis (since d =0).
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APPENDIX B
HYPERELLIPSE PARAMETERS FOR
SAMPLE CONVEX HULL OF FIGURE 2

This appendix contains the equations defining the hyperellipse parameters for the
surface shown in figure 2. The convex surface of this shape is defined on the region
-9.89 <x <11.0. The equations defining the surface are the generalized hyperellipse
equations in the form of equation (2). The parameter d for this shape is varying, and
therefore, the centerline of the cross sections is nonconstant throughout the x-range. In
this case, the d parameter takes on the value

~3.01835+ (3.7245 x10°3 ) - (7.5864 X 10'4)x2 for -9.89<x<-2.2307,

—~2.8479 +0.53107x + 0.62639x2
+0.35628x3 +0.09839x* +0.01064x° for —-2.2307<x<-1.3135,

—-3.026132 for —1.3135<x<11.0.

.

Using this variable d parameter, the cross sections are defined in two components. The
first components are labeled with a subscript 1 (i.e., a1, b; and p;) and are valid for points
where z > d(x). The second components are labeled with a subscript 2 (i.e., a3, b7, and
p2) and are valid for points where z < d(x). To have a smooth (up to C* smoothness is
guaranteed) junction between these two parts of each cross section, the b parameters are
forced to be the same, b, = b,.

For the convex hull shape in figure 2, the cutout region will be defined to contain
the entire region of the subscript-1 parameters (where z > d(x)), as well as a portion of
the subscript-2 parameters. Thus, the values of the subscript-1 parameters are somewhat
arbitrary. For convenience, the values of the a parameters can be forced to be the same
by making a; the same as a;. Also, for further simplicity, the value of p, is assumed to
be constant at p; =2 throughout the entire x-domain. The parameter a; (which for this
shape is the same as a) is given by the following expression:

- B-1



(~72.5113-15.8452x — 0.86036x2 for —9.89<x<-9.75,

—333247.6 -176750.3x — 37483.41x2 —3972.92x3

—-210.459x4 — 4.4575x3 for -9.75<x<-9.175,

1.38480 - 0.054875x — 0.017189x2 for -9.175<x<-2.23074,
ar =4 1.96119 +1.6046x +1.9074x2 +1.10659x3
171 +0.31345x4 +0.034934x3 for —-2.23074 <x <-1.3135,

1.43304 for -1.3135<x<94,
50240.1—24949.4x + 4948.6x2 — 490.038x3

+24.2284x% —0.47851x> for 9.4<x<10.7,
(—6.8818 +2.3587x — 0.15923x2 for 10.7<x<11.0.

The last parameter that remains to be defined for this convex hull shape is p;. The
parameter p, is defined by the following expression:

(22.1338 +0.94835x —0.31932x2

~0.040468x3 —(1.93717 x 10-3 Jx* for —9.89 < x <-2.2307,
23.3906 +11.8417x +19.1948x2 +14.2006x3
+4.67320x% +0.57471x5 for —2.2307 < x <—0.8135,
Py =420.657 for —0.8135<x <5.3736,

40279.12 - 33263.6x +10932.12x2 —1786.003x3
+145.033x4 — 4.68386x> for 5.3736 <x <6.3718,

784.119 — 340.423x + 56.1141x2
—4.11922x3 +0.11312x4 for 6.3718<x<11.0.

L

The preceding expressions define a complete convex hull shape. To obtain the
shape found in red in figure 2, the cutout region needs to be defined. The cutout region
for this convex hull shape is defined by all values of z that are greater than the following:



Z >4

,

—-3.02819

—-5.36825+0.10819x

0.0011+00154x +0.1448x2
—0.0115x3 + 0.00022x’4

—-6.7875+0.02169x

—-0.2265

for
for
for
for

for

9.73777 £ x < 21.63,
21.63<x <27.35,
27.35<£x<29.75,
29.75<x < 30.25,

30.25 < x <30.95.
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